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Levinson’s theorem for non-local interactions 
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Abstract. Levinson’s theorem for a Schrodinger equation with both local and non-local 
symmetric potentials is studied in terms of the Sturm-Liouville theorem. A new convention 
for the phase shifts is applied instead of the usual one. It is proved that the usual Levinson 
theorem holds for the case with both local potential and non-local symmetric cutoff 
potential, which is not necessarily separable. The problems related to the positive-energy 
bound states and the physically redundant solutions are also discussed in this paper. 

1. Introduction 

Levinson’s theorem (Levinson 1949) is one of the fundamental theorems in scattering 
theory, and has been confirmed by several authors (Jauch 1957, Ni 1979) in terms of 
a few different methods, and generalised to a variety of potentials and relativistic cases 
(Newton 1960, 1977a, b, Martin 1958, Wright 1965, Ma and Ni 1985). In comparison 
with previous proofs, the proof of Levinson’s theorem by the Sturm-Liouville theorem, 
suggested by Yang, is more simple, intuitive and more easily generalised (Ma 1985a, b, c, 
1986, Liang and Ma 1986, Chang and Ma 1987, Dai 1987). Some obstacles and 
ambiguities which may occur in the previous methods disappear in the new proof. In 
P O  2 and 3 of this paper, we prove in terms of the Sturm-Liouville theorem that 
Levinson’s theorem holds for the Schrodinger equation with both local and non-local 
symmetric potentials which are not necessarily separable. Some problems related to 
the positive-energy bound states and the physically redundant solutions will be dis- 
cussed in 0 0  4 and 5. 

2. Sturm-Liouville theorem and the convention for the phase shifts 

The radial Schrodinger equation with both local potential V( r )  and non-local symmetric 
potential U (  r, r ‘ )  is ( h  = 1, 2m = 1) 

E -  V ( r ) - -  ‘ ( ‘ ‘ ‘ ) ) u ( r ) =  I U ( r ,  r ’ ) u ( r ‘ )  dr’ 
r2 

where u ( r ) / r  is the radial function, 1 denotes the angular momentum and E denotes 
the energy. The operator U ( r ,  r ’ )  is assumed to be real and symmetric: 

U ( r ,  r ’ )  = U ( r ’ ,  r ) .  (2) 

$ On leave from the Institute of High Energy Physics, Beijing, China. 
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The mesonic theory of nuclear forces suggests that the interaction between two 
nucleons is local at great distances but becomes non-local if the two nucleons come 
close together. In order to simplify the demonstrations, we assume, following Martin 
(1958), that both interactions are well behaved in the finite region, i.e. non-singular 
out of the origin and not too singular at the origin (cf Chadan 1958), and they are 
vanishing at distances larger than a :  

at r 2 a. 
V(r)=O 
U( r, r ’ )  = 0 

(3) 

We call them cutoff potentials. The tail of the local potential in infinity will not change 
the essence of the proof and was discussed before (Ma 1985a, c). With this assumption, 
the integral range on the right-hand side of (1) is, in fact, from 0 to a, and the equation 
in the region [a, 03) simply becomes the one for the free particles: 

Firstly, we show the Sturm-Liouville theorem for equation (1). Denote u1 as a 
solution of (1) with the energy El. Multiplying the equations for U and U ,  by u1 and 
U ,  respectively, and subtracting one equation from the other, we obtain 

d 
d r  
- ( U U : - u r U l ) + ( E l - E ) u u l  

= u ( r )  I U ( r ,  rr)ul(r’)  drr -u l ( r )  U(r ,  r r ) u ( r ’ )  dr’. I 
Integrating it over the variable r in the interval [0, a ]  and noting the symmetric property 
( 2 )  of U(r ,  r ‘ ) ,  we get 

( u u { - u ’ u , ) / ‘ l = - ( E , - E )  0 I: uul dr‘. 

We apply the physical boundary condition at the origin (see the appendix) 

u ( r ) - 0  at r - 0  (4) 
so 

- -1; U’( r‘)  dr’. - 

The logarithmic derivative u ‘ / u  of the radial function U at a- decreases monotonically 
with respect to the energy. Similarly, we discuss the solutions in the region [ a ,m)  
instead of the region [0, a ] ,  and from the boundary condition 

u ( r ) - 0  when E < O ,  r - m  (4’) 

so that u ’ / u  is not continuous at a except for a bound state. Then we have 
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Equations (5) and (5’) are the Sturm-Liouville theorem for the case with both local and 
non-local symmetric potentials. Notice that the non-local symmetric cutoff potential 
does not need to be separable for the validity of the Sturm-Liouville theorem. 

Secondly, we make a convention for the phase shifts. The phase shift is determined 
by its tangent function up to an integral multiple of T. In the usual convention, the 
phase shift is defined by the relative value with respect to the phase shift at infinite 
energy; it is assumed that 6 ( 0 ) - 6 ( ~ )  is finite and S ( E )  is a continuous function of 
energy. In some cases there may be trouble with the usual convention. For example, 
Levinson’s theorem for the case with the repulsive hard core for which S ( o 3 )  - --CO 

used to be considered as being violated (Newton 1982). In the case with a positive- 
energy bound state, both numerator and denominator of tan S vanish and there is no 
reason to require the phase shift to be continuous at this energy (Kermode 1976). 

As a matter of fact, according to Levinson’s theorem, the number of bound states 
is only related to the behaviour of phase shifts near zero energy (or near E = *A4 for 
the Dirac equation). The above problems come from the convention of phase shifts 
(Ma 1985~) .  

Now, we make a new convention to give an absolute definition to the phase shift: 

6 ( E ) = 0  for zero potentials. 

The phase shift S ( E )  changes as the potential changes from zero to the given value. 
We do not require that the phase shift be continuous with respect to the potential. On 
the contrary, the phase shift S(0) at zero energy jumps when a bound state is created 
or annihilated. The jumps are the essence of Levinson’s theorem. However, the 
logarithmic derivative of the radial function ( u ’ / u ) l a -  = A ( E )  changes as the potential 
changes, and the phase shift is monotonic with respect to A ( E )  (e.g. see (14)). 
Therefore, the phase shift 6(0) at zero energy changes determinately as the potential 
changes, no matter whether the phase shift at the infinite energy is finite or not, and 
whether the phase shift jumps or not at the energy where a positive-energy bound state 
occurs. 

3. Levinson’s theorem 

Under this convention of the phase shift we can prove Levinson’s theorem for the case 
with both local and non-local symmetric potentials in terms of the Sturm-Liouville 
theorem in a similar way to that for the case with only a local potential (Ma 1985a). 
We are going to sketch the proof here. 

At first, we discuss the solutions with E < 0. In the region [ a ,  a), there is only one 
solution of ( 1 ’ )  vanishing in infinity: 

u ( r )  = [ ~ k ~ r / 2 ] ” *  exp[ i (~ /2) (1  + ~ ) ] H j : ) l , Z ( i k l r )  

at k , r - m  

u ( r ) - 0  at r - W .  
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In the region [0, a ] ,  there is also only one solution of (1) vanishing at the origin. When 
V ( r )  = U(r ,  r ‘ )  = 0, we have the solution in the region [0, a ]  

u ( r )  = ( 2 x k I r ) ” ‘  exp ( - i ; ( 1 + $1) J,+ 1,z ( i k 1 r 1 

at k , r - 0  

at k , r -oo  

2( k ,  r )“ ‘  
= ( 2 x k , r ) ” 2 Z ~ + l , 2 ( k l r ) -  

u ( r ) - 0  at r - 0  

where k ,  = [ -E]”’  and K l + l l z ( x )  and Z,+l/z(x) are the modified Bessel functions 
(Bateman 1953). Then we obtain the logarithmic derivatives near r - a 

when E S O  
when E - --CO 

and 

when E s 0 
when E - -W. 

A( E )  decreases monotonically and B (  E )  increases monotonically as energy E increases 
from negative infinity to zero. These monotonical properties hold for non-vanishing 
potentials V and U because of the Sturm-Liouville theorem. When V and U change 
from zero to the given values, B ( E )  does not change but A ( E )  changes. Because of 
the monotonical property, if there is an  overlapping region between the variable areas 
of A ( E )  and B ( E ) ,  there must be a bound state at some negative energy E. From 
(9a) and  (9b) there is no overlapping region, so no bound state for the case with 
V = U = 0. For the finite potentials, A(w) does not change and the variable area of 
A ( E )  only depends on the boundary value A(0)  as the potentials change. Note that 
as the potential changes u ( u ) ( ~ = , ,  may change to cross zero and A(0)  may cross infinity, 
which is not a singularity of the solution. There may be several overlapping regions 
between the variable areas because A(0)  may change to cross infinity several times. 
Owing to the Sturm-Liouville theorem, there is only one energy E in each overlapping 
region with which the matching condition is satisfied: 

U‘ U’ - - _  
U l a - -  U l a +  

namely, there is a bound state. The number n, of bound states is equal to the number 
of the overlapping regions between the variable areas of A ( E )  and B ( E ) .  We denote 
by n, the number of times A(0)  decreases to cross the value - l / a ,  and by n- the 
number of times A(0)  increases to cross that value as potentials V ( r )  and U(r ,  r ’ )  
change from zero to the given values. Then we have 

(11) 

Secondly, we discuss the solutions with E > 0. There is only one solution vanishing 
at the origin for the potential V( r )  and U (  r, r ’ )  and the logarithmic derivative A( E )  

n, = n, - n-. 
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of the solution at a- can be calculated in principle. A ( E )  changes as the potentials 
change. In the region [a, 00) the general solution to (1') is 

U( r )  = ( k r ) [cos  S (  E)j , (  kr) - sin S (  E)n , (  k r ) ]  
I - i c  - sin( kr - 1 ~ / 2  + 6 )  

k = [E]"'  
where j ,  and n,  are the spherical Bessel and Neumann functions. From the matching 
condition (10) the phase shift S (  E )  can be determined: 

k - Q  (ka)"" A(  0 )  - ( I  + 1 )/ a - -  
(21+1)!!(2I- l ) ! !  A ( O ) - ( - I / u )  ' 

If V = U = 0, the solution in the region [0, a ]  is (kr ) j , (  kr )  and the numerator of tan S ( E )  
vanishes, so it is possible to make the convention (6) for the phase shift. For the 
non-vanishing potentials, the factor ( ka)21t1 ensures 6(0) = n r .  There is an  exception 
for the case with a half-bound state which will be discussed below. Now, S(0) will 
be 2 m r  if tan S ( E )  for a positive energy E small enough falls in the first o r  fourth 
quadrant, o r  ( 2 m  + l ) ~  if it falls in the second or  third quadrant. S(0) changes by 7~ 

only if tan S ( E )  changes to cross infinity. On the other hand, from (13) we obtain 

cos2 S 
ka2[ ( A  - 1/  a )  n,( k a )  - kni( ka)I2 =s o s  

Therefore, the phase shift S(0) at zero energy increases by r each time when A ( 0 )  
decreases to cross the value ( - - I /u)  and S(0) decreases by r each time when A ( 0 )  
increases to cross that value, i.e. 

S ( O ) = ( n + - n - ) r r = n , r .  ( 1 5 )  
Finally, we discuss the critical case where A ( 0 )  is equal to ( - I / a )  for the given 

potentials V (  r )  and U (  r, r ' ) .  There is a bound state with E = 0 for this case with 1 > 0 
and  the solution in the region [a,  00) is as follows: 

For the S wave it is not a bound state and  is usually called a half-bound state. For 
definiteness, we assume that A ( 0 )  decreases to reach the value ( - / / a )  as the potentials 
change to reach the given values. We are going to see whether the phase shift S(0)  
increases an  additional IK to match the zero-energy bound state with I > 0; namely, we 
should show in this case 

From the Sturm-Liouville theorem ( 5 )  we have 

and it is easy to check that 

-kni( k a ) / n , ( k a )  - ( I +  l ) /a  - Ic2j2k2 



2090 Z-Q Ma and A-Y Dui 

so we have (17). In fact, equation (18b) can also be proved in terms of the Sturm- 
Liouville theorem similarly to (5’). In the region [a ,  CO) the solution with E = 0 is given 
in (16) and the solution with E ,  3 0 is taken as follows: 

As E ,  goes to zero we obtain for any r >  a 

u 2 ( a ) y l  - uz(r)- l  d(u’/ U )  ).= 1; u 2 ( r ’ )  dr’ 
a i  d E  

For I > 0 the second term on the left-hand side vanishes as r goes to infinity, so we 
obtain (18b). 

Note that (18b) holds only for I >  0. For the S wave the numerator of tan 6 ( E )  in 
(13) is proportional to k, and the denominator to k2,  that is, tan 6 ( E )  is proportional 
to k-’  and S(0) increases an additional 7r/2 as A ( 0 )  decreases to reach the value zero. 
This 7r/2 should be subtracted in (15) because there is no zero-energy bound state for 
the critical case in the S wave, so we obtain Levinson’s theorem 

where n, is the number of non-positive-energy bound states and 6 ( E )  is the phase 
shift at energy E in our convention. Levinson’s theorem holds without any modification 
for the case with both local and non-local cutoff symmetric potentials. 

4. Positive-energy bound states 

In the case with only a local interaction, the wavefunction and its first derivative would 
never vanish at the same point except for the origin, so there is no positive-energy 
bound state. However, in the case with a non-local interaction, Martin (1958) showed 
that while the potentials satisfy some condition, the solution with an asymptotic form 
is not unique, i.e. there exists the positive-energy bound state with a vanishing 
asymptotic form. If a small perturbative potential, non-local or local, is added, the 
positive-energy bound state will disappear and the phase shift at this energy increases 
rapidly by almost 7r. It can be seen explicitly in all the examples given by Martin 
(1958) and Kermode (1976). 

It was pointed out by Kermode (1976) that the inverse tangent function is not 
single-valued and it is physically more satisfying to include a jump by 7r to the phase 
shift at the energy Eo where a positive-energy bound state occurs. Martin (1958) and 
Chadan (1958) defined the phase shift to be continuous even at Eo so that an additional 
T will be included into 6(0) - ~ ( c o )  for each positive-energy bound state. This is their 
reason to modify Levinson’s theorem by a term UT where U denotes the number of 
positive-energy bound states. But in the viewpoint of Kermode, no modification to 
Levinson’s theorem is needed. 

However, the phase shift at zero energy in our convention does not change, no 
matter which viewpoint is used, i.e. no matter whether the phase shift jumps or not at 
the energy with a positive-energy bound state. Therefore, Levinson’s theorem (20) 
holds for the cases where positive-energy bound states may occur. 
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5. Redundant state 

The resonating group model of the scattering of nuclei, or other composite systems, 
derives an effective two-body interaction in which a non-local potential appears. There 
are some physically redundant states which describe Pauli-forbidden states for the 
compound system, and the physical two-body states must be orthogonal to these 
redundant states (Tamagaki 1968). Saito (1968, 1969) and Okai et a1 (1972) proposed 
a simple non-local term which guarantees the required orthogonality, and verified that 
it is a good representation of the interaction. If there is just one redundant state 
represented by the real normalised wavefunction U (  r ) ,  then Saito’s equation (Okai et 
a1 1972, Englefield and Shoukry 1974) is ( h  = 2 m  = 1): 

E - V ( r ) - -  

jOw U 2 ( s )  ds = 1. 

Multiplying by U ( r )  and integrating over r, one gets 

E U (  r ) + (  r )  d r  = 0 .  

The solution of (10) satisfies the orthogonality constraint except for that of zero energy. 
Saito’s non-local potential is separable, but not symmetric, so the Sturm-Liouville 
theorem is hard to prove in this case. 

Englefield and Shoukry (1974) generalised Chadan’s method to prove a modified 
Levinson theorem for this case: 

n , +  1 = ( l / ~ ) 6 ( 0 )  (23) 

whereas they did not pay attention to the critical case because it was irrelevent to the 
problem in which they were interested. 

In mathematics, there is a zero-energy solution Go( r )  

$ o ( r ) - O  at r - 0. (24) 

$o satisfies (21) with zero energy. The general solution is i ,bo+c~o where +o satisfies 
(24) with U (  r )  = 0. If U (  r )  vanishes fast enough in infinity, one can always choose 
the appropriate parameter c so that the solution C C $ ~  vanishes in infinity, that is, 
there is always a zero-energy bound state for (21). This is a so-called physically 
redundant state. The additional one on the left-hand side of (23) describes the 
redundant state. As far as a mathematical equation (21) is concerned, the redundant 
state is one of the bound states. The number of ail the non-positive-energy bound 
states for Saito’s equation in the mathematical meaning still satisfies Levinson’s 
theorem. 
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lj: U(r, r ' )u(r ' )  dr '  
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Appendix. The asymptotic behaviours of the solutions at  the origin 

There are two independent solutions 4, and 42 to the homogeneous equation with 
E > 0 :  

4I and 42 satisfy the following asymptotic behaviours: 
c,r '+' at r -0  
[k]-'/ 'sin(kr-$ln+S,) a t r - w  

c2 r-' a t r - 0  
at r - w .  42(r)  - { [ k]-'" cos( kr - 4 1 ~  + 6,) 

The Wronskian of ( A l )  gives 

(+;&- 4441) =constant = 1. (A3) 
When E <0, there are also two independent solutions 41 and 42 to ( A l )  in the 

region [0, a ]  with the asymptotic behaviours at the origin 

4 1 ( r ) -  cIr '+ '  4 A r )  - c2r-I at r - 0. (A41 

G(r, r') = 41(r1)42(r2) (A51 

41( r )  and &(r)  also satisfy (A3). Now, the Green function of (1) is as follows: 

where rl = min( r, r'), r2 = max( r, r'), and 

GIt+ E - V - -  ' ( I +  'I) G = - 6(  y - r'). (A61 ( r2 

We make an ansatz 

so the physically admissible solution to (1) in the region [0, a ]  can be expressed as 

U ( r) = c41  ( r) - [ [ G (  r, r') U (  r', r") U ( r") d rt  dr"  

= c ~ ! ~ ~ ( r ) - - + ~ ( r )  [:dr"u(r") [;dr'&(r')U(r' ,  r") 

r a  r r  

-4*(r)  J dr"u(rt ' )  J dr ' 6 ' ( r ' )U( r ' ,  r"). 
0 0 
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Near the origin, 41( r)  - r'+l, &( r)  - r-' 

Because of (3), (4) and (A7) are satisfied. 
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